

for Celestia, version 1.3.1+, created by Chris Laurel

(http://www.shatters.net/celestia/)
Written by Don Goyette, with contributions from the Celestia developers and forum members.
Editing by Selden Ball, Jr. and other Celestia forum members
Version 1.0g
Last revised on June 17, 2004
Table of Contents

iiTable of Contents

1Introduction

1Viewing This Document

2Acknowledgements

2Disclaimer

2Introduction

3Symbols Used in this Guide

3Terms Used in this Guide

3Argument

3Data Types

5Default

5Null

6Celestia .CEL Scripts

6What Is a Celestia .CEL Script?

7Writing Celestia Script Commands

8Comment Lines

8Your First Celestia .CEL Script

10Coordinate Systems

10Celestia's Coordinate Systems

11Chase (Chase)

12Ecliptical (Follow)

13Equatorial (n/a)

13Lock (Lock)

14Universal (Free - Esc key pressed)

14Observer/Local

14Geographic (Sync Orbit)

14Web pages that discuss Coordinate Systems in more detail:

16.CEL Script Commands

16.CEL Script Command Descriptions

16Command Reference -- Alphabetical

18Command Reference -- Category: Object Control and Display

19Command Reference -- Category: Overall Display - Rendering - Flags

20Command Reference -- Category: Movement - Navigation

20Command Reference -- Category: Date and Time

21Alphabetical Listing of Commands

21cancel

21center

22changedistance

22chase

24cls

24follow

25goto

27gotoloc

30gotolonglat

31labels

32lock

33lookback

33mark

34move

34orbit

35preloadtex

36print

38renderflags

39rotate

40select

40set

41setfaintestautomag45deg

41setframe

42setorientation

43setposition

44setsurface

44setvisibilitylimit

45seturl

46synchronous

47time

47timerate

47track

48unmark

48unmarkall

48wait

50Deprecated CEL Scripting Commands

51Document Version History

511.0f – Feb 2, 2004

Introduction
Viewing This Document

If you downloaded this file (ie. not reading the HTML version on-line), please make sure you are reading the file with a program that fully supports the file type. For example, if this is the Word document (.doc) file, then you should be using one of the following products:

· Microsoft Word
· Microsoft Word Viewer, available at
http://office.microsoft.com/officeupdate/category.aspx?CategoryID=CD010225841033&CTT=98
· OpenOffice.org, available at http://www.openoffice.org/

Warning: The .doc file will not display properly in WordPad.
If this file is the Rich Text Format (.rtf) file, make sure that the program you are using fully supports this format, so the file is displayed properly. For example, Windows WordPad works fine, but Windows Notepad will not display it properly. Note: URLs (links) do not function in the RTF text file.
Here are a couple of checks to make sure the program you are using is formatting and displaying the document correctly:

1) The heading page of this guide should contain a graphic image which includes the text "Celestia" on one line, ".CEL Scripting Guide" on the next line, with graphics of telescopes and some space objects above and to either side of the text.

2) Below, there should be two graphic images. The first is a Stop sign with an open hand in it, and the second is a sticky-note with a thumb tack in it.

 [image: image2.bmp] [image: image3.bmp]
If you see all of these images, then it should be okay for you to continue using the document display program you are currently using.

If you do not see these images, try a different program with known support for the file type you are trying to view.

Acknowledgements

First, I would like to thank Chris Laurel, and the entire Celestia development team, for creating such an incredible 3-D space simulation program. If it wasn't for Chris, we'd all be doing something boring, like watching TV, or writing an e-mail to Aunt Nellie!
By the way, if you are an experienced C++ programmer with a little extra time, who has an interest in advancing Celestia to new heights, please check out the Celestia Source Forge Project page, located at http://sourceforge.net/projects/celestia/, and consider offering some of your valuable time and experience. Celestia users seem to generate more good ideas for new features than our programmers have time to implement them!
Thank you to the folks who provided Celestia scripting information in the past:

· Unknown for their Scripting.html document:
 http://63.224.48.65/celestia/docs/scripting.html
· Selden Ball, Jr. for his List of Resources for Celestia web page:
 http://www.lns.cornell.edu/~seb/celestia/
A sincere thank you also goes to all the folks who post messages on the Celestia Forums, located at http://ennui.shatters.net/forum/, that relate to the topics covered in this Guide – which are many. Your names are too numerous to list here, but we are all indebted to you for sharing your Celestia and astronomical knowledge and experience with us.
If you have not yet checked out the Celestia Forums (http://ennui.shatters.net/forum/), you should! They are educational, a lot of fun, and you will meet some interesting characters there too.
Disclaimer

As much as I and the editors have tried to make sure the information and example code contained in this guide is correct, there are bound to be mistakes, omissions, or some things that are confusing or not explained well enough. If you happen to find one of these, please tell us about it by leaving a message on the Celestia Scripting forum (http://ennui.shatters.net/forum/viewforum.php?f=9) so we can fix it. Thank you!
Introduction

If you are new to Celestia, the best place for you to start is the Celestia User's Guide, written by Frank Gregorio. It can be downloaded from the Celestia Documentation web page, located at http://www.shatters.net/celestia/documentation.html. The Celestia User's Guide is available in the following languages and file formats:

· English (MS Word, HTML, and Adobe PDF
· French (MS Word)

· Japanese (MS Word and Plain Text)

The Celestia User's Guide takes you on a step-by-step guided tour of Celestia and its user interface, explaining and demonstrating what many of the mouse, keyboard, and menu options do. Once you are familiar with the keyboard and menu options available in Celestia, and how they function, you may want to automate some of your Celestia journeys so other folks can enjoy them too. The easiest way to do this is through Celestia's simple, built-in scripting capability called .CEL Scripting, which is what this guide is all about.

If you find that .CEL Scripting is too easy and want more of a challenge, or if you already know another programming language, you might want to explore the Lua programming language interface to Celestia, which was introduced in version 1.3.1. This guide does not currently cover any of Lua's capabilities or how to write a Celestia script using Lua. However, you can find Lua information at http://www.lua.org/, and a few example Lua scripts for Celestia at the Celestia project site on SourceForge at http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/celestia/celestia/scripts/.
In addition, Harald Schmidt has created a "Summary of Lua-support in Celestia" PDF document that is available on his Celestia web page at http://www.h-schmidt.net/celestia/, along with several example .celx (Lua) scripts for Celestia.
Symbols Used in this Guide

	[image: image4.bmp]
	Warning

	[image: image5.bmp]
	Note

Terms Used in this Guide

Argument

Sometimes referred to as a variable or parameter, an argument is merely a human-readable name that is assigned to the place in your computer's memory where the value you are assigning to the argument is stored. For example, the wait command has one argument, named duration. Other commands, like the print command, can have more than a single argument.

Data Types

A Data Type describes the type, or kind, of data that is used by the argument. The Data Types used by Celestia .CEL scripts include <String>, <Number>, and <Vector>, each of which is described in detail below:
· <String> This Data Type consists of any number of characters (text) enclosed in double quote marks ("). For example, "Hello world." is a <String> Data Type, and the text contained between the quote marks is sent to the script interpreter as a <String>.
For example:
 select { object "Mars" }

Some commands require the <String> value to be one item from a specific list of strings (text), and will reject any other values you might assign. For example, the set command uses an argument called name, which is a <String> value, but the value must be one of the following values:
 MinOrbitSize
 AmbientLightLevel
 FOV
 StarDistanceLimit

If you assign text to the name argument that is not one of these values, such as "Hello", you will receive a script error and the script will not run.

· <Number> This Data Type consists only of digits, the numbers 0-9. It may, or may not, include any of the following, depending on the argument:
 * Decimal point
 * Sign prefix ("-" for negative numbers, such as -98.53)
 * Exponent suffix (such as 31.0e+15)

When you assign a <Number> value, you do not use double quote marks around the value, as is done with a <String> value. For example, to assign a value of 5.5 to a <Number> argument, you simply enter the digits, such as:
 wait { duration 5.5 }

	[image: image6.bmp]
	* Do not use a negative number for the time argument. This will freeze your Celestia display, without warning, and you will then need to press the Esc key to reset the display.
* Do not use a negative number for the duration argument, as the command will be ignored.

· <Vector> This Data Type consists of an array (or grouping) of three individual <Number> values, enclosed within square brackets "[]". Each <Number> value is separated by a space (spacebar). The <Vector> Data Type in Celestia, is mostly used to set 3-dimensional coordinates in space via three <Number> values that represent the X, Y, and Z Axes, from left to right in the array. The X, Y, and Z values represent different things depending on the argument.

For example, the setposition command requires two <Vector> values, base and offset. The values shown below will position the camera outside of the Milky Way:
 setposition {
 base [-64132.43 47355.11 196091.57]
 offset [0 0 -1.52e-005] }

In some commands, a <Vector> is used to specify a single X, Y, or Z axis, by entering a value of 1 in the corresponding axis position and entering a 0 in the other axis positions. For example, the up argument of the goto command uses a <Vector> value for describing which axis of the selected Coordinate System you want to point "up". The example below sets the "up" axis to Y, since the <Vector> represents the three axes in the [X Y Z] format:
 select { object "Sol/Earth" }
 goto { time 5
 distance 5.5
 upframe "follow"
 up [0 1 0] }
 wait (duration 5 }
· <Base64> This Data Type consists of characters copied from a Celestia Cell://URL which are encoded in Base-64.

For example, the setposition command can use x, y, and z values from a Cell://URL that are encoded in Base-64. The values shown below will position the camera outside of the Milky Way:
 setposition {
 x "AMDCXoJK/3+IyGgR8f///w"
 y "BvP2LRdAAAD/n5UGCw"
 z "VUrGoeQJ+/8DyvenLQ" }

Default

A default value is the value automatically assigned to an argument by the script engine if you do not include that argument in the command code. However, not all arguments have a default value (ie. select) so if you do not specify an argument in the command you are using, make sure it has a default value, or you will get a script error. For example, if you do not specify the duration argument in the wait command, a value of 1.0 seconds will automatically be assigned, as in:

wait {}

Null

A null value means that no arguments are used with that command. For example, the lock command does not accept any arguments, so it is coded as follows ...
lock {}

... with nothing between the curly braces.
Celestia .CEL Scripts
What Is a Celestia .CEL Script?

A Celestia .CEL script is simply a plain-text file that contains a list of instructions for Celestia to carry out automatically. For example, when a default installation of Celestia is run, the on-screen display (which will be called the camera in this guide), moves to Jupiter's moon Io. This action is taken automatically when Celestia is run, via the included startup script, named start.cel, which is located in the main Celestia program folder. You also may have learned that pressing the [d] key on your keyboard runs a Demo of Celestia. This too, is a Celestia .CEL script. The filename of this script is demo.cel and it is also located in the main Celestia program folder.
You can open a Celestia script with any plain-text editor, such as Notepad, Wordpad or Word (for Windows users). Just make sure that when you save your script file to disk, that its filename uses the file extension ".cel", as this is how your computer's operating system knows the file is one of Celestia's script files, and also that you save it as a plain text file (Rich Text Format files will not work). If you are interested in seeing what a .CEL script looks like, run your favorite plain-text editor now, and open the start.cel script in Celestia's main folder.
	[image: image7.bmp]
	Before modifying either of these scripts (start.cel or demo.cel), please copy the original script files to a safe place FIRST, just in case you need them at a later date.

The start.cel script that comes with Celestia should look similar to the following:

{

select { object "Sol/Jupiter/Io" }

follow {}

goto { time 5 }

gotolonglat { time 0 distance 1e11 longitude 0 latitude 0 }

gotolonglat { time 0 distance 2.5 longitude -122 latitude 47 }

 Seattle!

wait { duration 0.1 }

orbit { axis [0 1 0] rate 10 duration 7 }

goto { time 5 distance 10 }

wait { duration 5.0 }

}

All of the commands and arguments shown in this script will be discussed later in this guide. If you are familiar with Celestia's keyboard commands, you should understand a lot of it just by looking at it. The select command is the same as pressing [Enter] and typing in an object name. The follow command is the same as pressing the [f] key on your keyboard. And, the goto command is the same as pressing the [g] key.
The lines that start with the "#" character are comment lines, that are not executed. When the "#" character is removed, that line of code will be executed the next time you run the script. Chris Laurel, the creator of Celestia, included these commented lines for user experimentation.
Writing Celestia Script Commands

The very first character in a Celestia .CEL script must be an opening curly brace "{". The very last character in a script must be a closing curly brace "}". Therefore, an empty, but valid, Celestia .CEL script file looks like the following:
{ }
That's right, the opening and closing curly braces would be the only text in the script file. However, this script does absolutely nothing at all, which makes it pretty useless. Every script you create for Celestia will have at least one command line in it, which is a line of text instructing Celestia to set or do something.

A typical single Celestia script command line consists of the following pieces:

· A command name, such as wait
· A space (spacebar)
· An opening curly brace {
· Zero or more argument names, such as duration, along with the value you want the argument set to ... For example: duration 5.5 or object "Mars"
· A closing curly brace }
Here are some command line examples:

· Assign a <Number> value of 5.5, to the argument duration, in the command wait, which tells Celestia to pause for the number of seconds you enter:
 wait { duration 5.5 }
Notice there are no double quote marks (") around the <Number> value (5.5) because double quote marks are used only to specify a <String> value.

· Assign a <String> value of "Mars", to the argument object, in the select command:
 select { object "Mars" }
Here, double quote marks tell Celestia that a <String>, or text value (Mars), is being sent to it. When sending a <String> to Celestia, the value must be enclosed in double quote marks.
Some Celestia .CEL scripting commands, such as print, send more than one argument. In these cases, you enclose all arguments and their associated values between the command's opening and closing curly braces, such as:

print { text "Hello universe." row -4 column 1 duration 5 }

or

print { text "Hello universe."
 row -4

 column 1
 duration 5 }

All arguments for each command must be enclosed within the command's curly braces, such as the example above shows. You may include as much white space (spaces, blank lines, etc.) as you deem necessary, and you may even specify each argument and its associated value on a different line – all for clarity.

Comment Lines
The "#" character can be used as the first character in a script line to make that line a comment line, which the script engine will ignore (not execute). For example:

This is my Celestia script

 select { object "Sol/Earth" }

 center { time 3 }

 wait { duration 3 }

Every line beginning with the "#" character will be ignored by Celestia's script engine (the internal part of Celestia that reads and interprets a script file into Celestia commands).
Your First Celestia .CEL Script

The first Celestia script you create should probably be a template script (see below for an example), that contains the specific settings you want Celestia to have every time you run one of your scripts. Actually, you don't have to create this script at all, as it has already been done for you. All you need to do is modify it to suit your needs, once you learn more about Celestia script commands. Here is a very short example of a template script:
{

 #--

 # Written by: <your name>

 # on: <date>

 #

 # The purpose of this script is ...

 #--

 # Set Celestia values (modify to meet your needs)...

 #--

 # Render the following objects...

 renderflags { set "cloudmaps|planets|stars" }

 # Unmark all objects...

 unmarkall {}

 # Set Field of View...

 set { name "FOV" value 30.0 }

 # Set Time Rate (1x, 100x, 1000x, etc.)...

 timerate { rate 1.0 }

 #--

 # Script Body - Your code goes here ...

 #--

 <your command lines go here>
 #--

 # End of Script - Let the user know the script is done running ...

 #--

 print { text "The script is finished."

 row -3

 column 25

 duration 5 }

 wait { duration 5 }

}

A template script saves you time because you don't have to remember or code all of the initial start-up values you want to set, in every script you write. And, the settings in the template script can be easily modified whenever you use it to begin a new script.

The example template script above also demonstrates the value of using comment lines to describe the script, who wrote it, when it was written, what the script is supposed to do, and what each section of the script code is doing. Comments are particularly useful when you want to share your scripts with other Celestia users, who did not write it, and may not fully understand what your intent was when you wrote it.

To obtain a free, much more in-depth template script, visit the Celestia Scripting Forum, located at http://ennui.shatters.net/forum/viewforum.php?f=9. The script is located in the following topic: http://ennui.shatters.net/forum/viewtopic.php?t=2961 (Template Script for .cel scripts). Or visit Don G's Celestia Page (http://www.donandcarla.com/Celestia/) and download the latest version.
When you save a Celestia .CEL script file to disk, the file extension must be ".cel", which allows your operating system to recognize the file as belonging to Celestia, and allows Celestia to know this file is one of its .CEL scripts. Also, you must save the file as plain text. Rich Text Format files do not function in Celestia because they also contain embedded formatting information.
When you double-click on a script filename in your file browser, the operating system will automatically run Celestia (if it's not already running), which will in turn run the script file. In Microsoft Windows, this is called File Association.

The example template script above can be copied, pasted into your text editor, and then saved to a file on your computer named template.cel. Or, just download the complete, free template from Don G's Celestia Page (http://www.donandcarla.com/Celestia/). When you learn more about Celestia .CEL scripting commands, you will want to edit your template script to setup Celestia the way you like to see things.
You now have a ready-made, beginning script that you can use whenever you want to create a new script. Simply open the template.cel file and immediately save the file as another name (File / Save As) – and enter the name of your new script.

Coordinate Systems
Celestia's Coordinate Systems

The following definition is from Astronomy Answers -- Astronomical Dictionary (http://www.astro.uu.nl/~strous/AA/en/woordenboek.html#coordinate_system) ...
A Coordinate System is a tool that allows fixing of positions by measuring distances in different directions. Those distances are the coordinates. There are two often-used classes of coordinate systems: those that use rectangular (or cartesian) coordinates, and those that use polar coordinates. Polar coordinates use angles (for the direction) and one distance, and usually have a base plane that the angles are tied to. Rectangular coordinates use only distances, measured in mutually orthogonal directions from a common origin. Coordinate systems are often named for the thing in or on which they measure positions, or for the base plane or origin with which they are associated.

The names of polar coordinate systems that fix positions on a celestial body are often made up of the Latin or Greek name of the body, followed by graphical, for example geographical for the Earth. The names of the corresponding rectangular coordinate systems (with the center of the body as origin) usually have the same first part, but followed by centric, for example geocentric for the Earth, planetocentric for planets in general, or heliocentric for the Sun.

When running Celestia interactively, you can see that it has several different modes, including Follow, Sync Orbit, Lock, Chase, and Free (none, Esc key was just pressed). Together with one or two selected objects, these modes define a Celestia Coordinate System. In Celestia's interactive mode, you control your exact position (longitude, latitude, orientation, orbit type, etc.) with keystrokes. In .CEL scripting, there are no interactive keystrokes, so you need to tell Celestia exactly where you want to be located in the 3-dimensional universe, and how you want the camera to be oriented. This is where Celestia's Coordinate Systems come into play. This section describes how the X, Y, and Z, axes of each 3-dimensional Coordinate System are aligned.
Each of Celestia's interactive modes is represented by a Coordinate System in .CEL scripting, which is set via the setframe command. The following list shows each of Celestia's interactive Modes along with its corresponding Coordinate System:

Related Coordinate

Celestia Mode
System (setframe)

Chase
chase

Follow
ecliptical

Lock
lock

Free (none set)
universal

Sync Orbit
geographic

n/a
equatorial

n/a
observer/local (both used in code and Bookmarks)
Below, is a brief description of the Coordinate Systems Celestia uses, which you will find helpful when using the goto, gotoloc, gotolonglat, and setframe commands. You may want to skip this section until you actually have a need to select a Coordinate System in your script, then come back here to learn more about how each system is aligned.
All of Celestia's Coordinate Systems are orthonormal, meaning that the X, Y, and Z axes are all at right angles to each other and all have unit length (there is no stretching).

Chase (Chase)
The Chase Coordinate System (which is also a .CEL script command) tells Celestia to chase the currently selected object through space, which keeps your orientation constant with respect to the direction in which an object is moving. This Coordinate System is similar to lock (explained below), except that the Z axis points in the direction of motion relative to the target object's parent body (the Sun for planets, a planet for moons). The keyboard command for chase is the quote mark ["].
In Chase mode, your position remains fixed relative to the target's direction of motion. If you're directly in front of or behind the target (in terms of its motion), you'll remain there regardless of how it moves. In the case of the Moon, Chase is similar to Sync Orbit mode (Geographic Coordinate System, although the Moon wobbles around quite a bit) because the Moon's direction of motion is nearly fixed with respect to its surface, in terms of longitude, at least.

Try Chase mode with a comet other than Halley. Because comets generally have highly eccentric orbits, the direction of motion will not always be almost perpendicular to the direction to the Sun. In Lock mode the Sun will stay fixed, but it will drift across the field of view in Chase mode.

Note: When you click any of the example links below, if Celestia is not currently running, the program will be started. Celestia will then be directed to display the scene as described in a saved Cell://URL. All of the visual, on-screen examples in this guide are presented in this manner, as saved Cell://URLs. If the file format you are using does not support these links (ie. does not run Celestia or display these scenes), copy the Cell://URL text and then paste it into the Address bar of your browser.
Here is a "Chase Moon" example with the Earth in view and time sped up.
cel://Chase/Sol:Earth:Moon/2003-08-21T06:52:13.46379?x=MEnpHzvMcjbLDA&y=bGaLyzeEfg&z=tSb1nY+r83gI&ow=0.134317&ox=-0.116625&oy=-0.982872&oz=-0.048167&select=Sol:Earth:Moon&fov=11.232885&ts=10000.000000<d=0&rf=2711&lm=49152

Here is an example of chasing the International Space Station as it passes over the southwest U.S.A.
cel://Chase/Sol:Earth:ISS/2003-08-18T18:22:00.50613?x=Rxar44rgPtTKDA&y=Hm5zfcxKFg&z=5S0VG5mqnxcJ&ow=-0.014557&ox=0.125254&oy=0.991866&oz=0.017389&select=Sol:Earth:ISS&fov=20.172722&ts=10.000000<d=0&rf=2711&lm=49216

A closer view of the ISS.
cel://Chase/Sol:Earth:ISS/2003-08-18T16:37:40.92238?x=QO/LBT1WltHKDA&y=BZ8v5eYeHA&z=eIK69cCeARwJ&ow=-0.162169&ox=0.470633&oy=0.847726&oz=0.183212&select=Sol:Earth:ISS&fov=83.034142&ts=10.000000<d=0&rf=2967&lm=49152

Following the ISS provides quite a different perspective,
cel://Follow/Sol:Earth:ISS/2003-08-19T00:24:04.39120?x=CXQ5i5ZQ9t3KDA&y=21xfnfIhGg&z=ANUFePvmhAkJ&ow=-0.719911&ox=-0.444001&oy=0.511589&oz=0.151222&select=Sol:Earth:ISS&fov=68.312462&ts=100.000000<d=0&rf=2967&lm=49216

while locking ISS and Earth is similar to Chasing ISS.
cel://PhaseLock/Sol:Earth:ISS/Sol:Earth/2003-08-18T18:18:31.55462?x=UU5NeFeULtTKDA&y=OAawihL8Fg&z=mMJ0Da9JARgJ&ow=-0.034557&ox=-0.179894&oy=0.968668&oz=0.167710&select=Sol:Earth&fov=96.122467&ts=10.000000<d=0&rf=2967&lm=49216

Ecliptical (Follow)

The Ecliptical Coordinate System tells Celestia to follow the selected object. As the object moves through space, the camera moves with it. The object can rotate on its axis below you, which means the longitude will constantly change – but you will remain the same distance and latitude above the object. The keyboard command for follow is the [f] key.
The X axis points away from the Sun in the direction of the Julian 2000.0 vernal equinox. The Y axis is normal to the ecliptic with positive Y north. The Z axis completes the right-handed coordinate system.
Example: Moon orbiting Earth (starting from the lower right corner).
cel://Follow/Sol:Earth/2003-09-08T15:36:16.17625?x=IGbgoHFF/RPNDA&y=6sEjCL2tNQ&z=TZe8QsgxgPkD&ow=0.590026&ox=0.108706&oy=0.797316&oz=-0.065877&select=Sol:Earth&fov=25.745958&ts=10000.000000<d=0&rf=2711&lm=49152

Another example of how Ecliptical/Follow works: Follow Earth with Orbits displayed.
cel://Follow/Sol:Earth/2003-09-12T02:43:49.61548?x=AAAlIfvXfCK4DA&y=Xg1baTz60mG4&z=VSokNenF8cm6/////////w&ow=0.365811&ox=0.459924&oy=0.685501&oz=0.429815&select=Sol:Earth&fov=25.745955&ts=1000000.000000<d=0&rf=2743&lm=49154

Using the Ecliptical Coordinate System on our sun (Sol), allows you to watch the planets orbit the sun.
cel://Follow/Sol/2006-09-08T13:07:56.45071?x=AADER1J42VPWDA&y=CkwO3rHqa8Q2&z=VcpAbDhE8G9k/////////w&ow=-0.141244&ox=-0.566118&oy=0.806803&oz=0.092897&select=Sol&fov=25.745993&ts=1000000.000000<d=0&rf=2743&lm=49154

Equatorial (n/a)
??? This Coordinate System is selectable in the setframe command but is not available as a keystroke command.
Lock (Lock)
As when running Celestia interactively, this coordinate system involves two objects – the first object selected is called the reference object, and the second is called the target object. When two objects are locked together as a pair, as you rotate the scene, the target object stays locked to the reference object, and the distance displayed is the distance between the two objects. The keyboard command for lock is the colon [:].
The Z axis points from the reference object (first object selected) to the target object; the Y axis lies in the plane defined by the Z axis and the rotation axis of the reference object, at a right angle to the Z axis. The X axis completes the right-handed coordinate system.
In Lock mode, your position remains fixed relative to a line between the reference object and the target object. As the target object moves around the reference object (relatively speaking) so do you. Thus if the target object is Sol, the illuminated fraction of the reference object (its "phase") remains the same because you're moving around the object in sync with Sol.

	[image: image8.bmp]
	From the developers: Unfortunately, this definition does not work when the rotation axis is perfectly aligned with the reference to target direction. It also produces strange results with precessing objects. We are looking into changing it so that this Coordinate System is defined by the axis of precession instead of the axis of rotation.

Example: Lock Earth-Moon showing Moon Phases. Earth is the reference object and Moon is the target object.
cel://PhaseLock/Sol:Earth/Sol:Earth:Moon/2003-08-17T01:32:18.13069?x=8Fk2UN0+TJHKDA&y=vkY4eIHMOw&z=RdFCjP5pPHgJ&ow=0.808591&ox=0.166290&oy=0.535185&oz=-0.179180&select=Sol:Earth:Moon&fov=11.232886&ts=100000.000000<d=0&rf=2711&lm=49152

Another example using Earth as the reference object, but Sol as the target.
cel://PhaseLock/Sol:Earth/Sol/2007-08-28T06:59:21.22591?x=AKS7pOkuDy3MDA&y=zLG9Rjcl&z=1drjcBB3a+oG&ow=0.824363&ox=0.118785&oy=-0.520150&oz=0.189101&select=Sol:Earth:Moon&fov=1.595636&ts=1000.000000<d=1&rf=35735&lm=49156

Universal (Free - Esc key pressed)
Setting the Coordinate System to universal de-selects the current Coordinate System and places Celestia into free (or absolute) mode, which is what happens when you press the [Esc] key on the keyboard. This mode is not time dependent – a given position (using one of the goto commands) will always place you at the same point in space regardless of the current simulation time.

Observer/Local
??? This Coordinate System is selectable in the setframe command but is not available as a keystroke command.
Geographic (Sync Orbit)
The Geographic Coordinate System allows you to remain in a stationary, or geosynchronous orbit above the selected object (not just Earth). As the object rotates below, the camera moves with it, as if it were attached to the object. The keyboard command for Sync Orbit is [y].
In the Geographic Coordinate System, the axes rotate with the selected object. The Y axis is the axis of rotation – counter-clockwise, so it points north for prograde rotators like Earth, and south for retrograde rotators like Venus. The X axis points from the center of the object to the intersection of its zero longitude meridian and equator. The Z axis (at a right angle to the XY plane) completes the right-handed coordinate system. An object with constant geographic coordinates will thus remain fixed with respect to a point on the surface of the object.
	[image: image9.bmp]
	The origin of all Celestia Coordinate Systems, except universal, is the center of the reference object. For example, if you are following Mercury and execute a gotoloc command with a position of [0 0 0], you will travel to the center of Mercury. In universal mode, [0 0 0] is a location near the Sun (Sol).

The position argument in gotoloc is a point in the current Coordinate System specified in units of kilometers.

Web pages that discuss Coordinate Systems in more detail:
Astronomy Answers -- Astronomical Dictionary (text only):
http://www.astro.uu.nl/~strous/AA/en/woordenboek.html#coordinate_system
Coordinate Systems Overview (text and graphics):

http://www.colorado.edu/geography/gcraft/notes/coordsys/coordsys_f.html
Celestial Coordinate System (text and graphics):

http://csep10.phys.utk.edu/astr161/lect/time/coordinates.html
Coordinate Systems in Astronomy (text and graphics):

http://www.astro.virginia.edu/~teacha/130_manual/node9.html
Earth Coordinate System (text and graphics):

http://zebu.uoregon.edu/~js/ast121/lectures/lec02.html
Beyond Our Skies: Discovering the Cosmos -- Coordinate Systems (text and graphics):

http://library.thinkquest.org/29033/begin/coordinate.htm
Coordinate system transformation (equations and graphics):

http://astronomy.swin.edu.au/~pbourke/projection/coords/
.CEL Script Commands
.CEL Script Command Descriptions

This section lists all Celestia .CEL script commands, as of version 1.3.1, along with a description of what each command does, what its arguments are, default argument values, valid values for the arguments (if any exist), and examples of how to code the command.
Remember, experimentation can be the most enjoyable part of learning, so please take your time and experiment with each of the commands. If you discover a particularly interesting effect when implementing a series of commands, please, by all means, share it with all the other Celestia users in the Celestia Scripting Forum (http://ennui.shatters.net/forum/viewforum.php?f=9).
The first part of this section provides an alphabetical reference list of script commands, and a categorized list, by the type of command.
	[image: image10.bmp]
	* All Celestia script commands must be entered in lower-case only, as shown, or they will not be recognized by Celestia. You should also enter all argument names in lower-case only, even though some are not case sensitive.
* When you code a command that includes a time or duration argument, such as goto, print, center, etc., you must include a wait command after it, with a duration equal to or greater than the length of time used in the command. If you forget to do this, the command may be ignored or may not function as you intend.

Command Reference -- Alphabetical
	cancel
	Cancels goto and track commands, and resets the Coordinate System to universal.

	center
	Center the currently selected object in the display.

	changedistance
	Change your distance from the selected object.

	chase
	Set the Coordinate System to chase.

	cls
	Clear the display screen of all text printed using the print command.

	follow
	Follow the currently selected object – Sets the Coordinate System to ecliptical.

	goto
	Go to the currently selected object using the current Coordinate System.

	gotoloc
	Go to the specified position and orientation of the currently selected object using the current Coordinate System.

	gotolonglat
	Go to the specified longitude and latitude of the selected object.

	labels
	Set or clear labels to be displayed.

	lock
	Lock two objects together in the camera's view. Sets the Coordinate System to lock.

	lookback
	Change the current camera view by 180 degrees.

	mark
	Mark the defined object with the specified symbol.

	move
	Move the camera at the specified velocity.

	orbit
	Orbit the currently selected object using the current Coordinate System.

	preloadtex
	Pre-load a texture file from disk to memory.

	print
	Display a text message on the display screen.

	renderflags
	Set or clear items to be rendered/displayed on-screen.

	rotate
	Rotate the camera view.

	select
	Select an object (planet, moon, galaxy, etc.).

	set
	Set the Min Orbit Size, Ambient Light Level, Field Of View, Star Distance Limit, or Star Style.

	setfaintestautomag45deg
	Set the Magnitude of stars to be displayed when Auto-Magnitude is ON.

	setframe
	Set the Coordinate System to be used.

	setorientation
	Set the camera's orientation.

	setposition
	Set the camera's position in space.

	setsurface
	Set the name of an alternative surface for the selected object.

	setvisibilitylimit
	Set the Magnitude of stars to be displayed when Auto-Magnitude is OFF.

	seturl
	Move the camera to the location of a saved "location URL" (or Cell://URL).

	synchronus
	Orbit the currently selected object in Synch Orbit mode. Sets the Coordinate System to geographic.

	time
	Set the date and time in JulianDay format.

	timerate
	Set the time multiplication factor, ie. 100x.

	track
	Keep the currently selected object centered in the display.

	unmark
	Unmark the specified object.

	unmarkall
	UnMark all objects and disable the display of Marks.

	wait
	Pause script execution for the specified number of seconds.

Below, is a categorized listing of script commands that should help you find the type of command you need, with some commands being listed in multiple categories. Each category is separated by a page-break in case you want to print them out on paper:
Command Reference -- Category: Object Control and Display
	center
	Center the currently selected object in the display.

	chase
	Set the Coordinate System to chase.

	follow
	Follow the currently selected object – Sets the Coordinate System to ecliptical.

	lock
	Lock two objects together in the camera's view. Sets the Coordinate System to lock.

	lookback
	Change the current camera view by 180 degrees.

	orbit
	Orbit the currently selected object using the current Coordinate System.

	rotate
	Rotate the camera view.

	select
	Select an object (planet, moon, galaxy, etc.).

	setframe
	Set the Coordinate System to be used.

	setorientation
	Set the camera's orientation.

	setposition
	Set the camera's position in space.

	setsurface
	Set the name of an alternative surface for the selected object.

	seturl
	Move the camera to the location of a saved "location URL" (or Cell://URL).

	synchronus
	Orbit the currently selected object in Synch Orbit mode. Sets the currently active Coordinate System to geographic.

	track
	Keep the currently selected object centered in the display.

Command Reference -- Category: Overall Display - Rendering - Flags
	cls
	Clear the display screen of all text printed using the print command.

	labels
	Set or clear labels to be displayed.

	lookback
	Change the current camera view by 180 degrees.

	mark
	Mark the defined object with the specified symbol.

	preloaxtex
	Pre-load a texture file from disk to memory.

	print
	Display a text message on the display screen.

	renderflags
	Set or clear items to be rendered/displayed on-screen.

	set
	Set the Min Orbit Size, Ambient Light Level, Field Of View, Star Distance Limit, or Star Style.

	setfaintestautomag45deg
	Set the Magnitude of stars to be displayed when Auto-Magnitude is ON.

	setframe
	Set the Coordinate System to be used.

	setsurface
	Set the name of an alternative surface for the selected object.

	setvisibilitylimit
	Set the Magnitude of stars to be displayed when Auto-Magnitude is OFF.

	unmark
	Unmark the specified object.

	unmarkall
	UnMark all objects and disable the display of Marks.

Command Reference -- Category: Movement - Navigation
	cancel
	Cancels goto and track commands, and resets the Coordinate System to universal.

	center
	Center the currently selected object in the display.

	changedistance
	Change your distance from the selected object.

	chase
	Set the Coordinate System to chase.

	follow
	Follow the currently selected object – Sets the currently active Coordinate System to ecliptical.

	goto
	Go to the currently selected object using the current Coordinate System.

	gotoloc
	Go to the specified position and orientation of the currently selected object using the current Coordinate System.

	gotolonglat
	Go to the specified longitude and latitude of the selected object.

	lookback
	Change the current camera view by 180 degrees.

	move
	Move the camera at the specified velocity.

	orbit
	Orbit the currently selected object using the current Coordinate System.

	rotate
	Rotate the camera view.

	setframe
	Set the Coordinate System to be used.

	setorientation
	Set the camera's orientation.

	setposition
	Set the camera's position in space.

	seturl
	Move the camera to the location of a saved "location URL" (or Cell://URL).

	synchronus
	Orbit the currently selected object in Synch Orbit mode. Sets the currently active Coordinate System to geographic.

	track
	Keep the currently selected object centered in the display.

Command Reference -- Category: Date and Time
	time
	Set the date and time in Julian Date or UTC format.

	timerate
	Set the time direction (forward or backward) and set the time multiplication factor (ie. 100x).

	wait
	Pause script execution for the specified number of seconds.

Alphabetical Listing of Commands
cancel

(null)

Cancels goto and track commands, and resets the Coordinate System to universal, which means it also cancels follow, synchronous and other Coordinate System related commands. This command is much like pressing the ESC key when running Celestia in its interactive mode.
When moving from one object to another, it's a good idea to use the cancel command between them, in order to release any functional hold that exists on the currently selected object. If you want to maintain your current Coordinate System setting (if other than universal), you will need to reset it via the setframe command after executing the cancel command.
For example, the first part of this script selects the Earth, goes to it, and then performs other commands, maybe to change it's view, speed up time, etc. The second section executes a cancel command, selects Mars, and then performs other commands on Mars:

 select { object "Sol/Earth" }

 goto { time 3 }

 wait (duration 3 }

...

<other commands doing other things>

...

 cancel { }

 select { object "Sol/Mars" }

 goto { time 3 }

 wait { duration 3 }

...

<other commands doing other things>

...

If the currently selected object has follow enabled, then it will be automatically overridden by selecting and following a new object.

If the currently selected object has track enabled, as of Celestia version 1.3.1 you can use the following code to cancel only a track command:

select { object "" }

track { }

center

time <Number> (default 1.0)

Centers the currently selected object in the display. You must first use the select command to select an object to be centered.

	time
	Number of seconds to take centering the object.

	[image: image11.bmp]
	Do not use a negative number for the time argument. This will freeze your Celestia display, without warning, and you will then need to press the Esc key to reset the display.

The following example selects the Earth and takes 5-1/2 seconds to center it on the screen. If you do not see the Earth, press the "g" key on your keyboard and you should see the Earth zoom into view from the center of the display:

select { object "Sol/Earth" }

center { time 5.5 }
changedistance

duration <Number> (default 1.0)

rate <Number> (default 0.0)

Changes the camera's distance from the currently selected object. You must first use the select command to select an object.
	duration
	Number of seconds to take when changing the distance.

	rate
	Speed at which to change the distance. Small values work best, from decimal values, to 5 or 6. A negative value moves the camera closer to the object, while a positive value moves the camera further away ("+" sign is not necessary).

	[image: image12.bmp]
	Do not use a negative number for the duration argument, as the command will be ignored.

The following example selects the Earth, travels to it, and then spends 2-1/2 seconds changing your display distance to be further away from the Earth:

select { object "Sol/Earth" }

goto { time 3 }

wait { duration 3 }

changedistance { duration 2.5 rate 0.5 }

wait { duration 2.5 }

chase

(null)

Tells Celestia to set the active Coordinate System to chase, which chases the currently selected object through space (please refer to the Coordinate Systems section earlier in this guide). This keeps your orientation constant with respect to the direction in which an object is moving. This Coordinate System is similar to lock (please see below), except the Z axis points in the direction of motion relative to the target object's parent body (the Sun for planets, a planet for moons). The keyboard command for chase is the double quote mark ["].

In Chase mode, your position remains fixed relative to the target's direction of motion. If you're directly in front of or behind the target (in terms of its motion), you'll remain there regardless of how it moves. In the case of the Moon, Chase is similar to Sync Orbit mode (Geographic Coordinate System, although the Moon wobbles around quite a bit) because the Moon's direction of motion is nearly fixed with respect to its surface, in terms of longitude, at least.

Try Chase mode with a comet, other than Halley. Because comets generally have highly eccentric orbits, the direction of motion will not always be almost perpendicular to the direction to the Sun. In Lock mode the Sun will stay fixed, but it will drift across the field of view in Chase mode.

	[image: image13.bmp]
	* Before using the chase command, you must first use the select command to select an object.

Only one Coordinate System can be active at any given time:

· chase (Chase)
· equatorial

· ecliptical (Follow)
· geographic (Sync Orbit)
· lock (Lock)
· observer

· universal (Free – ie. Esc key pressed)

The following example selects the Moon, sets the Coordinate System to chase, and then goes to the Moon:

select { object "Sol/Earth/Moon" }

chase { }

goto { time 2 }

wait { duration 2 }

The following Cel:/URLs (links that display pre-defined scenes on your Celestia program) demonstrate a couple views of Earth, from the Moon, with the Moon set to chase:

Chase Moon, with Earth in view
cel://Chase/Sol:Earth:Moon/2003-09-29T02:24:01.65592?x=NmgtqSucTmfNDA&y=Dawu7ij5HA&z=J0zEiSliAYP+/////////w&ow=0.936040&ox=0.018333&oy=0.347256&oz=0.053905&select=Sol:Earth:Moon&fov=25.000031&ts=10000.000000<d=0&rf=2711&lm=49152

Chase Moon with Earth and Sun
cel://Chase/Sol:Earth:Moon/2004-06-18T23:52:25.45421?x=4O/tRdjxFRe9DA&y=Gjek9BgxYv7//////////w&z=VVoLa31FBhcQ&ow=-0.989363&ox=0.047153&oy=-0.113197&oz=0.078252&select=Sol:Earth:Moon&fov=25.745911&ts=100000.000000<d=0&rf=2967&lm=49156

cls

(null)

Clears the display screen of any left-over text that was printed via the print command. Personally, I have not found a need to use this command in any of the scripts I have written.
Example:

cls { }

follow

(null)

This command tells Celestia to set the Coordinate System to ecliptical, and to follow the currently selected object (please refer to the Coordinate Systems section earlier in this guide). As the object moves through space, the camera moves with it. The object can rotate on its axis, which means the longitude will constantly change, but the camera will remain the same distance and latitude above the object.

The X axis points away from the Sun in the direction of the Julian 2000.0 vernal equinox. The Y axis is normal to the ecliptic with positive Y north. The Z axis completes the right-handed coordinate system.

You must first use the select command to select an object to be followed.

	[image: image14.bmp]
	Only one Coordinate System can be active at any given time:

· chase (Chase)
· equatorial

· ecliptical (Follow)
· geographic (Sync Orbit)
· lock (Lock)
· observer
· universal (Free – ie. Esc key pressed)

When you follow Earth, this coordinate system makes Earth the center of the solar system, where the Sun revolves around the Earth: Cell://URL Follow Example.

This example selects Mars, sets the Coordinate System to ecliptical (follow), and then travels to Mars:

select { object "Sol/Mars" }

follow { }

goto { time 2 }

wait { duration 2 }
goto

time <Number> (default 1.0)

distance <Number> (default 5.0)

upframe <String> (default "observer")

up <Vector> (default [0 1 0] "Y")

Moves the camera to the currently selected object, taking time seconds, stopping distance from the object, using the upframe Coordinate System, and defining the axis that points up. You must first use the select command to select an object.
	time
	The number of seconds to take going to the object.

	distance
	Describes how far away from the object you want to be positioned, in units of the object's radius, plus 1. For example, if the object's radius is 10000 km, and you specify 6 for distance, you will be positioned 50000 km from the object's center.
An easy way to compute this value is: distance = distance you want to be from the object, divided by the object's radius, plus one.
For example, if you want to be 1,000,000 km from Earth, which has a radius of 6,378.1 km, then the calculation is:

 (1000000 / 6,378.1) + 1 = 157.7865
Special distance values:

0 (zero) = Center of the object. In version 1.3.1, using this value causes the program to incorrectly recognize further positioning values, so do not use zero.

1 = Surface of the object. Traveling to the exact surface level of an object may cause some graphics cards to display random polygons on the display screen, so it is best to use a value slightly above the surface.

	upframe
	Sets the specified Coordinate System, which must be one of the following values (for more information, refer to the Coordinate System descriptions earlier in this guide):
· chase

· ecliptical

· equatorial

· geographic

· lock

· observer

· universal

	up
	Defines which axis points up, X [1 0 0], Y [0 1 0] or Z [0 0 1].

	[image: image15.bmp]
	Do not use a negative number for the time argument. This will freeze your Celestia display, without warning, and you will then need to press the Esc key to reset the display.

	[image: image16.bmp]
	* Before using the goto command, you must first use the select command to select an object.
* You can use other non-movement commands, such as print, while the camera is moving towards its destination.
* Before using other commands that have a time argument, you must execute a wait command with a duration equal to or greater than the value of the goto command's time argument. Otherwise, the camera will not execute the goto command, but will instead execute the next time-based command.

The following example selects Mars and takes five seconds to travel there:

select { object "Mars" }

goto { time 5 }

wait { duration 5 }

Invalid example -- The following is an example of how not to perform a time-based command in Celestia. One might assume that this series of commands would select Mars, taking five seconds to get there; then select Earth and take three seconds to get there. However, since the required wait command was not performed after the first goto command, Celestia ignores the first goto command and executes only the second one. You would only see Earth, and not Mars.
select { object "Mars" }

goto { time 5 }

select { object "Earth" }

goto { time 3 }

wait { duration 8 }

The correct way to script the above example is as follows:

select { object "Mars" }

goto { time 5 }

wait { duration 5 }

select { object "Earth" }

goto { time 3 }

wait { duration 3 }

The next example shows how a non-movement command can be used after a goto command, by displaying a message on the screen while Celestia is going to Mars:
select { object "Mars" }

goto { time 5

 distance 8.5

 upframe "follow"
 up [0 1 0] }

print { text "We're on our way to Mars."
 row -3 column 1
 duration 5 }

wait { duration 5 }

gotoloc

time <Number> (default 1.0)

position <Vector> (default [0 1 0])

xrot <Number> (default 0.0)

yrot <Number> (default 0.0)

zrot <Number> (default 0.0)

 -or-

time <Number> (no default)

x <Base64> (no default)

y <Base64> (no default)

z <Base64> (no default)

ow <Number> (no default)

ox <Number> (no default)

oy <Number> (no default)

oz <Number> (no default)

The gotoloc command moves the camera to the currently selected object, taking time seconds, traveling to the specified position (or the Base64 values x, y, and z from a Cell://URL), using the orientation specified via xrot, yrot, and zrot (or ow, ox, oy, and oz). You must first use the select command to select an object. (Note: gotoloc does not reset the coordinate system. It retains the previously set coordinate system.)

If you are attempting to duplicate a position based on a Cell://URL, you will also need to set the proper Coordinate System, position, and other parameters. (Also see seturl.)

The x, y, and z values represent position as stored by a Cell://URL. The ow, ox, oy and oz values represent orientation (xrot, yrot, and zrot) as stored by a Cell://URL. These values are obtained from the following Cell://URL values:

 ?x= &y= &z= and &ow= &ox= &oy= &oz=
	time
	The number of seconds to take going to the object.

	position
	Defines a point in the current Coordinate System specified in units of kilometers. For all but the universal Coordinate System, a position of [0 0 0] is the center of the object.
The first value represents the camera location, in kilometers, along the X axis.
The second value represents the camera location, in kilometers, along the Y axis.
The third value represents the camera location, in kilometers, along the Z axis.
The kilometer value you specify must include the radius of the object. For example, if you want to be positioned 100,000 km above the surface of the Earth, which has a radius of 6378.1 km, you would add the radius of the Earth to your desired altitude of 100,000 km, which results in a position value of 106378.1 (see example below).

	xrot
yrot
zrot
	xrot, yrot, and zrot are the "Eular Angle" or "Angle-Axis" representation of the camera's orientation. Think of them as Pitch, Yaw, and Roll in aviation. These are used to control which direction the camera is looking. The related keyboard commands are as follows:
 X/Pitch (Up/Down Arrow)
 Y/Yaw (with NumLock on: Keypad #4 and Keypad #6)

 Z/Roll (Left/Right Arrow)

	[image: image17.bmp]
	Do not use a negative number for the time argument. This will freeze your Celestia display, without warning, and you will then need to press the Esc key to reset the display.

The following example displays the Earth 100,000 kilometers away:

select { object "Sol/Earth" }

center { }

follow { }

gotoloc { time 2

 position [0 106378.1 0]

 xrot 90

 yrot 0

 zrot 0 }

wait { duration 2 }

The next example is a bit more complex and demonstrates both gotoloc methods. It travels to the Earth, setting a position so you can see the night lights over the USA, view the Sun in the upper left hand corner of the display, and the Moon in the upper right hand corner:
{

 cancel { }

 renderflags { clear "boundaries|comettails|constellations" }

 renderflags { clear "eclipseshadows|orbitspointstars|ringshadows" }

 renderflags { clear "automag|grid" }

 renderflags { set "cloudmaps|galaxies|nightmaps|planets|stars" }

 renderflags { set "atmospheres|markers" }

 labels { clear "planets|moons|spacecraft|asteroids" }

 labels { clear "constellations|stars|galaxies" }

Pause time and set the date and time...

 timerate { rate 0 }

 time { jd 2452874.692638889 }

Place a blue square marker around the Moon...

 unmarkall { }

 mark { object "Sol/Earth/Moon"

 size 20.0

 color [0 0 1]

 symbol "square" }

Set the Field Of View...

 set { name "FOV" value 47.0 }

 select { object "Sol/Earth" }

 center { }

 follow { }

Goto location: +7000km-X, +9000km-Y, +11000km-Z

Pitch Up +13X, Yaw Left -32Y, Roll Left -95Z

 gotoloc { time 2

 position [7000 9000 11000]

 xrot 13

 yrot -32

 zrot -95 }

 wait { duration 2 }

 print { text "Blue square is the Moon ---"

 row -24 column 32 duration 3 }

 wait { duration 3 }

#**

 print { text "First result done."

 duration 2 row -3 column 2 }

 wait { duration 2 }

#**

 cancel { }

 gotoloc {

 time 2

 x "wJjebddBM3XLDA"

 y "Z2/b0Q34Pw"

 z "GShiyVOKuxUI"

 ow 0.954531

 ox 0.112769

 oy -0.272262

 oz -0.045019 }

#**

 print { text "Second result done."

 duration 2 row -3 column 2 }

 wait { duration 2 }

#**

}
gotolonglat

time <Number> (default 1.0)

distance <Number> (default 5.0)

up <Vector> (default Y [0 1 0])

longitude <Number> (no default)

latitude <Number> (no default)

Go to the currently selected object, taking time seconds, stopping distance from the object, using up orientation, positioning yourself above the specified longitude and latitude surface coordinates. (Note: gotoloc does not reset the coordinate system. It retains the previously set coordinate system.)
	time
	The number of seconds to take going to the object.

	distance
	Describes how far away from the object you want to be positioned, in units of the object's radius, plus 1. For example, if the object's radius is 10000 km, and you specify 6 for distance, you will be positioned 50000 km from the object's center.
An easy way to compute this value is: distance = distance you want to be from the object, divided by the object's radius, plus one.

For example, if you want to be 1,000,000 km from Earth, which has a radius of 6,378.1 km, then the calculation is:

 (1000000 / 6,378.1) + 1 = 157.7865

Special distance values:

0 (zero) = Center of the object. In version 1.3.1, using this value causes the program to incorrectly recognize further positioning values, so do not use zero.

1 = Surface of the object. Traveling to the exact surface level of an object may cause some graphics cards to display random polygons on the display screen, so it is best to use a value slightly above the surface.

	up
	Defines which axis points up, X [1 0 0], Y [0 1 0] or Z [0 0 1].

	longitude
latitude
	These two values describe the surface coordinates you want to be positioned above, and should be specified as decimal values.

Longitude is specified as a negative number for the Western hemisphere and as a positive number for the Eastern hemisphere ("+" sign is not necessary).

Latitude is specified as a negative number for the Southern hemisphere, and as a positive number for the Northern hemisphere ("+" sign is not necessary).

	[image: image18.bmp]
	Do not use a negative number for the time argument. This will freeze your Celestia display, without warning, and you will then need to press the Esc key to reset the display.

	[image: image19.bmp]
	* Before using the gotolonglat command, you must first use the select command to select an object.
* You can use other non-movement commands, such as print, while the camera is moving towards its destination.
* Before using other commands that have a time argument, you must execute a wait command with a duration equal to or greater than the value of the goto command's time argument. Otherwise, the camera will not execute the goto command, but will instead execute the next time-based command.

This example selects the Earth and positions the camera over Seattle, Washington, USA:

select { object "Sol/Earth" }

synchronous { }

gotolonglat { time 5

 distance 3

 up [0 1 0]

 longitude -122

 latitude 47 }

print { text "Traveling to Seattle, Washington, USA."

 row -3 column 1 duration 5 }

wait { duration 5 }

print { text "Hovering over Seattle, Washington, USA."

 row -3 column 1 duration 5 }

wait { duration 5 }

labels

set <String> (no default)

clear <String> (no default)

Set (turn on) or clear (turn off) labeling of one or more of the items below. The set and clear string values can be any combination of the following items. Multiple values are specified within a single set of quotes (") by separating them with a vertical bar "|" (ie. "moons|stars"):

· asteroids

· comets
· constellations

· galaxies

· moons

· planets

· spacecraft

· stars

The following two examples demonstrate how to clear and set labels:
labels { clear "comets|constellations|galaxies|stars" }

labels { set "asteroids|moons|planets|spacecraft" }

lock

(null)

This command locks two objects together (please refer to the Coordinate Systems section earlier in this guide). As when running Celestia interactively, this coordinate system involves two objects – the first object selected is called the reference object, and the second object selected is called the target object. When two objects are locked together as a pair, as you rotate the scene, the target object stays locked to the reference object, and the distance displayed is the distance between the two objects.

The Z axis points from the reference object (first object selected) to the target object; the Y axis lies in the plane defined by the Z axis and the rotation axis of the reference object, at a right angle to the Z axis. The X axis completes the right-handed coordinate system.

In Lock mode, your position remains fixed relative to a line between the reference object and the target object. As the target object moves around the reference object (relatively speaking) so do you. Thus if the target object is Sol, the illuminated fraction of the reference object (its "phase") remains the same because you're moving around the object in sync with Sol.

	[image: image20.bmp]
	Only one Coordinate System can be active at any given time:

· chase (Chase)
· equatorial

· ecliptical (Follow)
· geographic (Sync Orbit)
· lock (Lock)
· observer
· universal (Free – ie. Esc key pressed)

The example below will maintain your position with respect to the center of the Earth, and keep both the Sun (Sol) and the Earth at a fixed location in the camera view. It's the same as if you typed the following keys on your keyboard: "3 f 0 :" (0 is a zero).
select { object "Sol/Earth" }

follow { }

select { object "Sol" }

lock { }

lookback

(null)
Change the current camera view by 180 degrees (like a rear-view mirror).

Example:

lookback { }

mark

object <String> (no default)
size <Number> (default 10.0)
color <Vector> (default [1 0 0] - Red)
symbol <String> (default "diamond")

This command marks the object with the specified symbol of the specified size and color.
	object
	Name of the object to be marked.

	size
	Diameter, in pixels, of the symbol.

	color
	Defines the color of the symbol. The three number values define the strength of Red, Green and Blue (RGB) respectively. Allowable values are from 0 to 1, with decimals being specified with a leading 0, such as 0.5. Any value over 1 is handled the same as if it were specified as 1. Here are some example color values:
 Black: [0 0 0]

 Red: [1 0 0] (default)
 Green: [0 1 0]

 Blue: [0 0 1]

 Yellow: [1 1 0]

 White: [1 1 1]

	symbol
	Defines what shape of symbol to mark the object with, which must be one of the following string values:

 * diamond (default)
 * plus

 * square

 * triangle

 * x

	[image: image21.bmp]
	If the object to be marked was previously marked, or if you are unsure, you must unmark the object first.

The following example marks the Earth with a green "x":
unmark { object "Sol/Earth" }

mark { object "Sol/Earth"
 size 15

 color [0 1 0]

 symbol "x" }

move

duration <Number> (no default)

velocity <Vector> (no default)

Move the camera at the specified velocity for the specified duration. A wait command is not necessary after a move command.
	duration
	Number of seconds to take during the move.

	velocity
	Speed, in km/second for each of the X, Y and Z axes, as defined for the currently active coordinate system. Positive and negative values are used to indicate forward and reverse respectively ("+" sign is not necessary for positive values).

	[image: image22.bmp]
	Do not use a negative number for the duration argument, as the command will be ignored.

This example moves the camera along the X axis for 10 seconds at a speed of 100,000 km/second:

move { duration 10 velocity [100000 0 0] }

orbit

duration <Number> (default 1.0)

rate <Number> (default 0.0)

axis <Vector> (no default)

Orbit the currently selected object, using the currently defined Coordinate System, around the specified axis. You must first use the select command to select an object, and optionally use the setframe command to define a Coordinate System, if one is not currently defined.

	duration
	Number of seconds to orbit the object.

	rate
	Speed at which to orbit the object, in units of degrees per second. Positive and negative values are used to indicate the direction of orbit ("+" sign is not necessary for positive values).

	axis
	Define which axis to orbit around [X Y Z]. Set the X, Y, or Z value to 1 for yes, 0 for no. You may also specify multiple axes. For example, to specify X as the axis, use [1 0 0], for Y use [0 1 0], and for Z, use [0 0 1]. To specify both, the X and Y axes, use [1 1 0].

	[image: image23.bmp]
	Do not use a negative number for the duration argument, as the command will be ignored.

The following example orbits Saturn for 12 seconds:

select { object "Sol/Saturn" }

center { }

goto { time 3

 distance 8

 up [0 1 0]

 upframe "equatorial" }

wait { duration 3 }

orbit { axis [0 1 0]

 rate 30

 duration 12 }

preloadtex

object <String> (no default)

Pre-load the specified texture file from disk into memory.

	object
	The name of the object who's texture is to be pre-loaded into graphics card memory.

Depending on the file size of the texture being loaded, you may want to follow this command with a wait command. If you are preloading multiple textures, or large textures, you should definitely use a wait command. The wait duration will depend on the size of the texture file(s) and may require some testing to get it just right.

This example pre-loads the texture file for Mars:

preloadtex { object "mars" }
print

text <String> (no default)

origin <String> (default "bottomleft")

duration <Number> (default 1.0)

row <Number> (default 0)

column <Number> (default 0)

The print command allows you to display text in Celestia's display window, defining where the text is positioned and for how long it should be displayed. You must follow the print command with a wait command of a duration equal to or greater than the specified duration is required.
Beware: If the text you want printed is longer than the width of the user's window, it will run off the right edge of the window.

	text
	The text you want displayed, surrounded by quote marks. You may also use "\n" to generate a CR/LF at any position within the text string.

	origin
	Starting position of the first character of your text. Must be one of the following values:

* bottom

* bottomleft

* bottomright

* center

* left

* right

* top

* topleft

* topright

Description of the origins:

bottom: Bottom-center of the screen (not center justified).
bottomleft: Left edge, bottom of the screen.
bottomright: Right edge, bottom of the screen. You must use a negative column value, or your text will be outside the right edge of the window.
center: Center of the display screen (not center justified).
left: Left edge, half way down the screen.

right: Right edge, half way down the screen. You must use a negative column value, or your text will be outside the right edge of the window.
top: Top-center of the screen (not center justified).
topleft: Left side, top of the screen.
topright: Right edge, top of the screen. You must use a negative column value, or your text will be outside the right edge of the window.
Use row and column to adjust the origin vertical and horizontal positions.

	duration
	Number of seconds to display the text message.

	row
	Defines the starting display line (vertical position), offset from the origin you specify, on which the text should be displayed. Positive values move the starting row down, while negative values move the starting row up ("+" sign is not necessary for positive values).
For example, if you specify an origin of left, but you want it to start three rows higher, then you would specify a row value of -3.
If you wanted the text to start three rows lower than the origin, you would specify a row value of 3.

	column
	The column number (horizontal position) where the first character of the text should be displayed. Column 0 (zero) is the left edge of the display screen.

	[image: image24.bmp]
	The print command must be followed by a wait command with a duration equal to or greater than that of the print command. Otherwise, you will not see the text you printed to the screen.

	[image: image25.bmp]
	Do not use a negative number for the duration argument, as the command will be ignored.

This example prints the message "Hello Universe!" three rows up from the bottom of the display screen, starting two columns from the left edge:

print { text "Hello Universe!" row -3 column 2 }

wait { duration 1 }

This example prints the word "Hello" five rows up from the bottom of the display screen, starting two columns from the left edge, and on the next line, prints the word "Universe!":
print { text "Hello\nUniverse!"
 origin "left"
 duration 5

 row -5
 column 2 }

wait { duration 5 }

renderflags

set <String> (no default)

clear <String> (no default)

set (turn on) or clear (turn off) one or more of the items below to be displayed on the screen. The set and clear values can be any combination of the following values. Multiple values are specified within a single set of quotes (") by separating them with a vertical bar "|" (ie. "orbits|stars"). The items in the square brackets indicate the related keyboard command:

· atmospheres Atmospheres [Ctrl+a]
· automag Auto Magnitude [Ctrl+y]

· boundaries Constellation boundaries [Ctrl+b]

· cloudmaps Cloud textures [i]

· comettails Comet tails [Ctrl+t]

· constellations ... Constellation labels [Ctrl+/]

· eclipseshadows ... Eclipse shadows [Ctrl+e]

· galaxies Galaxy rendering [u]

· grid Earth-based equatorial coordinate grid [;]

· markers Markers [Ctrl+k]

· nightmaps Night-side planet maps [Ctrl+l (L)]

· orbits Object orbits [o]

· planets Planet labels [p]

· pointstars [no longer used -- see set command]

· ringshadows Ring Shadows [no keyboard key]

· stars Stars [none]

Examples:

renderflags { set "automag|atmospheres|nightmaps" }
renderflags { clear "boundaries|galaxies|markers" }
rotate

duration <Number> (default 1.0)

rate <Number> (default 0.0)

axis <Vector> (no default)

Rotates the camera using the currently defined Coordinate System. You must first use the select command to select an object, and optionally use the setframe command to set Coordinate System, if it is not currently defined.
	duration
	The length of time, in seconds, to execute the rotate command.

	rate
	Speed at which to rotate the camera. Positive and negative values are used to indicate the direction of rotation ("+" sign is not necessary for positive values).

	axis
	Define which axis to rotate around [X Y Z]. Set the X, Y, or Z value to 1 for yes, 0 for no. You may also specify multiple axes. For example, to specify X as the axis, use [1 0 0], for Y use [0 1 0], and for Z, use [0 0 1]. To specify both, the X and Y axes, use [1 1 0].

	[image: image26.bmp]
	The rotate command must be followed by a wait command with a duration equal to or greater than that of the rotate command.

	[image: image27.bmp]
	Do not use a negative number for the duration argument, as the command will be ignored.

The following example rotates the camera to the right (positive rate value) along the Z axis of the currently selected object for 5 seconds:

rotate { duration 5

 rate 10

 axis [0 0 1] }

wait { duration 5 }
select

object <String> (no default)

Selects the specified object in order to perform other commands on it. If you are currently positioned outside of our solar system, and want to select an object inside of our solar system, you must include "Sol/" (our sun's name) in the object value, as shown in the example below.

	object
	The name of a planet, moon, asteroid, comet, galaxy, spacecraft, etc.

	[image: image28.bmp]
	If the object does not exist (ie. a misspelled name), the script will simply continue to the next command without selecting any object at all, even if an object was previously selected.

Examples:

select { object "M33" } #(Galaxy M33)

select { object "Mars" } #(When in our Solar System)

select { object "Sol/Mars" } #(When outside of our Solar System)

set

name <String> (no default)

value <Number> or <String> (default 0.0 or "")

Set one of the items listed below to the value specified in the value argument.

	name
	Must be one of the following values:

 * MinOrbitSize

 * AmbientLightLevel

 * FOV

 * StarDistanceLimit

 * StarStyle (How to display stars)
Descriptions for the above:

MinOrbitSize: This value is used when Celestia's render orbits option is turned on. In general, when an object is very distant its orbit path will not be shown. MinOrbitSize is the minimum radius (in pixels) which the orbit path must cover before Celestia will draw it.
AmbientLightLevel: Brightness level of Ambient Light, 0.0 to 1.0 is the min to max range. For realism, this should be set to 0.0. Setting it to 1.0 will cause the side of a planet facing away from the sun to appear as bright as the lit side.
FOV: Field of View. Celestia computes this value relative to the size of the display window, in pixels. The keyboard keys used to adjust FOV are the coma and period ("," and ".").
StarDistanceLimit: The furthest distance at which Celestia will display stars. The default value is 1,000,000, however, as of version 1.3.1, Celestia only uses a distance out to 16,000 light years.
StarStyle: This allows you to set how Celestia displays stars on the screen. The StarStyle value must be one of the following:
 * fuzzypoints

 * points

 * scaleddiscs

	value
	The value you want to assign to the name parameter.

Examples:

set { name "FOV" value 35.5 }

set { name "StarStyle" value "points" }
setfaintestautomag45deg

magnitude <Number> (default 8.5)

Set the lowest Magnitude of stars to be displayed when Auto-Magnitude is on.

	magnitude
	The magnitude at which stars will become visible, when Auto-Magnitude is on. The Celestia user interface allows a range from about 1.0 to 15.0.

Example:

setfaintestautomag45deg { magnitude 9.0 }
setframe

ref <String> (no default)

target <String> (no default)

coordsys <String> (default "universal")

Set the currently active Coordinate System (please refer to the Coordinate Systems section earlier in this guide).
	ref
	Defines the reference (first) object.

	target
	Optional - Defines the target (second) object, for 2-object coordinate systems, such as lock.

	coordsys
	Must be one of the following values:

 * chase

 * ecliptical

 * equatorial

 * geographic

 * lock

 * observer

 * universal

	[image: image29.bmp]
	Only one Coordinate System can be active at any given time:

· chase (Chase)
· equatorial

· ecliptical (Follow)
· geographic (Sync Orbit)
· lock (Lock)
· observer
· universal (Free – ie. Esc key pressed)

The following example sets the Coordinate System to lock, which locks the Earth and Moon together on the display:

setframe { ref "Sol/Earth"
 target "Sol/Earth/Moon"
 coordsys "lock" }

setorientation

angle <Number> (no default)

axis <Vector> (no default)

 -or-

ow <Number> (no default)

ox <Number> (no default)

oy <Number> (no default)

oz <Number> (no default)

Sets the camera orientation. If you are attempting to duplicate a position based on a Bookmark or Cell://URL, you will also need to set the proper Coordinate System, position, and other parameters. (Also see seturl.)
	angle
	This value may be obtained from a Celestia Bookmark, which is stored in the favorites.cel file located in the Celestia directory.

	axis
	This value may be obtained from a Celestia Bookmark, which is stored in the favorites.cel file located in the Celestia directory.

The ow, ox, oy and oz values represent the angle and axis as stored by a Cell://URL. They are obtained from the following Cell://URL values:
 &ow= &ox= &oy= and &oz=
Examples:

setorientation {

angle 0.945208

axis [0.81466 -0.570975 -0.101573] }

setorientation {

 ow 0.090610

 ox -0.494683

 oy 0.860207

 oz -0.084397 }

setposition

base <Vector> (no default)

offset <Vector> (no default)

 -or-

x <Base64> (no default)

y <Base64> (no default)

z <Base64> (no default)

Moves the camera to a specific position in the 3-dimensional universe. If you are attempting to duplicate a position based on a Bookmark or Cell://URL, you will also need to set the proper Coordinate System, orientation, and other parameters. (Also see seturl.)
	base
	This value may be obtained from a Celestia Bookmark, which is stored in the favorites.cel file located in the Celestia directory.

	offset
	This value may be obtained from a Celestia Bookmark, which is stored in the favorites.cel file located in the Celestia directory.

The x, y and z values represent the base and offset values as stored by a Cell://URL. They are obtained from the following Cell://URL values: ?x= &y= and &z=.
Both examples below position the camera to the same exact position in space outside of the Milky Way:

setposition {
 base [-64132.43 47355.11 196091.57]
 offset [0 0 -1.52e-005] }

setposition {

 x "AMDCXoJK/3+IyGgR8f///w"

 y "BvP2LRdAAAD/n5UGCw"

 z "VUrGoeQJ+/8DyvenLQ" }

setsurface
name <String> (no default)

Allows you to define an alternate surface texture for the currently selected object. An alternate texture must first be defined in the solarsys.ssc file for the object in question.
For example, if you want to create an alternate surface texture for Earth, called "Earth-2", and it's related texture filename is earth2.jpg, you would add the following entry to the solarsys.ssc file, after the closing brace for the ' "Earth" "Sol" ' entry:

AltSurface "Earth-2" "Sol/Earth"

{

 Texture "earth2.jpg"

}

In this example, "Earth-2" is the name of the alternate texture you will specify in the setsurface command.
	name
	Defines the name of the alternate texture defined in the AltSurface entry of the solarsys.ssc file, not the name of the texture file itself.

	[image: image30.bmp]
	Before using the setsurface command, you must first use the select command to select an object.

To use the built-in Celestia "limit of knowledge" textures, instead of the interpretive ones, use:
setsurface { name "limit of knowledge" }

Example:

setsurface { name "Earth-2" }

setvisibilitylimit

magnitude <Number> (default 6.0)

Set the Magnitude of stars to be displayed, when Auto-Magnitude is off. The Celestia user interface allows a range from about 1.0 to 15.0.
	magnitude
	Defines the magnitude at which stars will become visible, when Auto-Magnitude is off.

Example:

setvisibilitylimit { magnitude 6.5 }
seturl

url <String> (no default)

Move the camera to the location of a saved "location URL" (or Cell://URL), which you capture to the clipboard using the Ctrl+C or Ctrl+Ins keys.
	url
	Defines the Cell://URL to be used.

	[image: image31.bmp]
	When you use the seturl command, all of the saved settings stored in the Cell://URL are transferred to the user's currently running copy of Celestia.

Example:

seturl { url
 "cel://Follow/Sol/2002-09-01T16:58:51.32378?x=AAAAAMCrktOdILb5/////w&y=CkxgAADEXts7E7HX/////w&z=VcpQAAAAAAAAAMIy/////w&ow=0.090610&ox=-0.494683&oy=0.860207&oz=-0.084397&select=Sol&fov=49.499992&ts=1.000000<d=0&rf=6043&lm=0" }

Some example Cel:// URLs ...

Solar eclipse
cel://Freeflight/2004-01-23T14:16:37.53441?x=QGcgesLkFj+1DA&y=IGXjwESpGv///////////w&z=Fbs1esfXhe7y/////////w&ow=0.231217&ox=-0.566846&oy=0.772273&oz=0.169759&select=Sol:Earth:Moon&fov=4.098599&ts=0.000000<d=0&rf=68503&lm=49152

Moon and Earth Cross Sol
cel://PhaseLock/Sol:Earth/Sol:Earth:Moon/2004-01-21T17:41:47.40987?x=AACt9VF45j26Cg&y=9W04W6+z8kE&z=VUqNIERs1NWX/P///////w&ow=0.153437&ox=0.784752&oy=0.560930&oz=-0.214428&select=Sol:Earth:Moon&fov=0.000976&ts=100.000000<d=0&rf=2967&lm=49158

ISS rotating over Sol
cel://PhaseLock/Sol:Earth:ISS/Sol/2004-01-21T20:32:57.17702?x=+BwvJlcrcqO1DA&y=YMaF/EDm6////////////w&z=EuvkSMOMmK7y/////////w&ow=0.221298&ox=0.542102&oy=0.796562&oz=-0.150474&select=Sol:Earth:ISS&fov=0.479170&ts=10.000000<d=0&rf=68503&lm=49158

Sol-rise, ISS over Earth
cel://PhaseLock/Sol:Earth:ISS/Sol/2004-01-21T23:37:16.65668?x=VXeuKd/4q5u1DA&y=4oqqiviL7P///////////w&z=mNTz/TxEPLPy/////////w&ow=0.129734&ox=-0.846240&oy=0.441594&oz=0.268405&select=Sol&fov=8.524273&ts=10.000000<d=0&rf=2967&lm=49152

Sol-rise from ISS
cel://PhaseLock/Sol:Earth:ISS/Sol/2004-01-21T23:37:44.04313?x=m6kFYyBup5u1DA&y=6WrIUIH+6////////////w&z=UIemtceAQLPy/////////w&ow=0.123742&ox=-0.854558&oy=0.441435&oz=0.244036&select=Sol&fov=1.972328&ts=1.000000<d=0&rf=2967&lm=49152

Sol-rise from ISS 2
cel://PhaseLock/Sol:Earth:ISS/Sol/2004-01-21T23:37:43.95277?x=Fi7Q079vp5u1DA&y=NGnFKfP+6////////////w&z=Prk+BbF5QLPy/////////w&ow=0.123742&ox=-0.854558&oy=0.441435&oz=0.244036&select=Sol&fov=1.972328&ts=1.000000<d=0&rf=2967&lm=49152

Sol-set, ISS over Earth
cel://PhaseLock/Sol:Earth:ISS/Sol/2004-01-22T00:33:37.32971?x=dyxw16Pmkpm1DA&y=oLa0vUflEQ&z=0bGSliRpg7Ty/////////w&ow=0.129839&ox=-0.846187&oy=0.441496&oz=0.268683&select=Sol&fov=8.524272&ts=10.000000<d=0&rf=2967&lm=49152

synchronous

(null)

Orbit the currently selected object in synchronus orbit mode. This activates the geographic Coordinate System (please refer to the Coordinate Systems section earlier in this guide).
The Geographic Coordinate System allows you to remain in a stationary, or geosynchronous orbit above the selected object (not just Earth). As the object rotates below, the camera moves with it, as if it were attached to the object. The keyboard command for Sync Orbit is [Y].

In the Geographic Coordinate System, the axes rotate with the selected object. The Y axis is the axis of rotation – counter-clockwise, so it points north for prograde rotators like Earth, and south for retrograde rotators like Venus. The X axis points from the center of the object to the intersection of its zero longitude meridian and equator. The Z axis (at a right angle to the XY plane) completes the right-handed coordinate system. An object with constant geographic coordinates will thus remain fixed with respect to a point on the surface of the object.

The select command must be used first, to select an object.

	[image: image32.bmp]
	Only one Coordinate System can be active at any given time:

· chase (Chase)
· equatorial

· ecliptical (Follow)
· geographic (Sync Orbit)
· lock (Lock)
· observer
· universal (Free – ie. Esc key pressed)

Example:

select { object "Sol/Earth" }

synchronous { }

time

jd <Number> (Julian Date, no default)

 -or-

utc <String> (Universal Time, no default)

Sets the Date and Time using a Julian Date (a decimal number) or a UTC time string, in the format YYYY-MM-DDTHH:MM:SS.SSSSS.

	jd
	A valid Julian date.

	utc
	A valid date in UTC format: YYYY-MM-DDTHH:MM:SS.SSSSS

To obtain a Julian Date from a normal calendar date, try the U.S. Navy Calendar Date/Time to Julian Date/Time converter, located at: http://aa.usno.navy.mil/data/docs/JulianDate.html.

Examples of how to set the date and time to August 11, 2003 at 9:29:24 UTC:

time { jd 2452862.89542 }

 -or-

time { utc "2003-08-11T09:29:24.0000" }

timerate

rate <Number> (default 1.0)

Set the multiplier (speed) at which time changes.

	rate
	Defines the time multiplier (ie. 100x).

Special values:

 0 = Pause time

 1 = Reset to Real Time

 Negative values reverse time

This example sets the time multiplier to "1000x faster":

timerate { rate 1000 }

track

(null)

Track the currently selected object, which keeps it centered in the display. The select command must be used first, to select an object to be tracked.

For example, release your hold on any currently selected object (cancel), select the Earth (select), goto the Earth, and then track it. The Earth will begin to recede from you at the speed it actually travels in space, but Celestia will track the Earth by keeping it centered in the display. The code example below demonstrates this, with time sped up by 1000x:
cancel { }

select { object "Sol/Earth" }

goto { time 3 distance 7 }

wait { duration 5 }

track { }

timerate { rate 1000 }
If you want the camera to remain at a constant distance from the object, add a follow command after the track command.

If the currently selected object has track enabled, as of Celestia version 1.3.1 you can use the following code to cancel a track command:

select { object "" }

track { }

	[image: image33.bmp]
	The cancel command resets the Coordinate System to Universal. Thus, if you want to use a different Coordinate System, you must use the setframe command before using track.

unmark

object <String> (no default)

If an object was previously marked, this command unmarks it.

	object
	Defines the name of the object you want to unmark.

Example:

unmark { object "Sol/Earth" }

unmarkall
 (null)

This command removes any previously assigned marks from all objects and disables the display of marks.

Example:

unmarkall { }

wait

duration <Number> (default 1.0)

Pauses execution of the script for the specified duration value in seconds.

	[image: image34.bmp]
	Do not use a negative number for the duration argument, as the command will be ignored.

The following example pauses script execution for 15 ¼ seconds:

wait { duration 15.25 }

Deprecated CEL Scripting Commands

The commands listed in this section have been replaced with newer, more powerful or more general commands. Though they continue to work for now, you should use the new command.

setambientlight
brightness <Number> (default 0.0)
Set the brightness level of Ambient Light.
This command was replaced with a value in the name parameter of the set command.

Document Version History
1.0f – Feb 2, 2004
* Added extra information to the move command and corrected the example.
* Added this section.
1.0g – June 17, 2004

* Corrected the object definition in the preloadtex command and corrected the example.

---< end of document >---

[image: image35.png]

PAGE
iii

